No Access Published Online: 19 September 2019
The Physics Teacher 57, 446 (2019); https://doi.org/10.1119/1.5126820
Physics instruction for aspiring health care professionals, medical researchers, and biologists often fails to capture the interest of students. This is despite the many ways physics is used in research, diagnostics, and treatment. Universities are revising the introductory physics courses to be more relevant to pre-health students. Part of this process involves incorporating biomedically relevant material into both lecture and laboratory sessions in an authentic way with the physics content.
The authors want to acknowledge the National Science Foundation, who supported this work through the grants DUE 1141078 and DUE 1431447. We also thank Kate Haas and the Oregon Clinical and Translational Research Institute at the Oregon Health and Science University for letting us visit their facility and their helpful advice on the clinical and research use of BCA.
  1. 1. D. C. Meredith and E. F. Redish, “Reinventing physics,” Phys. Today 7, 38–44 (2013). https://doi.org/10.1063/PT.3.2046, Google ScholarCrossref, ISI
  2. 2. G. Kortemeyer, “The challenge of teaching introductory physics to premedical students,” Phys. Teach. 45, 552–557 (Dec. 2007). https://doi.org/10.1119/1.2809149, Google ScholarScitation
  3. 3. D. C. Meredith and J. A. Bolker, “Rounding off the cow: Challenges and successes in an interdisciplinary physics course for life science students,” Am. J. Phys. 80, 913–922 (Oct. 2012). https://doi.org/10.1119/1.4733357, Google ScholarScitation, ISI
  4. 4. B. D. Geller, C. Turpen, and C. H. Crouch, “Sources of student engagement in introductory physics for life sciences,” Phys. Rev. ST Phy. Educ. Res. 14, 010118 (2018). https://doi.org/10.1103/PhysRevPhysEducRes.14.010118, Google ScholarCrossref
  5. 5. E. F. Redish and D. Hammer, “Reinventing college physics for biologists: Explicating an epistemological curriculum,” Am. J. Phys. 77, 629–642 (July 2009). https://doi.org/10.1119/1.3119150, Google ScholarScitation, ISI
  6. 6. S. Manthey and E. Brewe, “Toward university modeling instruction-biology: Adapting curricular frameworks from physics to biology,” CBE Life Sci. Educ. 12, 206–214 (2013). https://doi.org/10.1187/cbe.12-08-0136, Google ScholarCrossref, ISI
  7. 7. E. Mylott, E. Kutschera, J. C. Dunlap, W. Christensen, and R. Widenhorn, “Using biomedically relevant multimedia content in an introductory physics course for life science and pre-health students,” J. Sci. Educ. Technol. 25, 222–231 (April 2016). https://doi.org/10.1007/s10956-015-9588-y, Google ScholarCrossref, ISI
  8. 8. R. Widenhorn, “Physics of Biomedicine,” YouTube, https://www.youtube.com/user/PhysicsinBiomedicine. Google Scholar
  9. 9. R. Widenhorn, Physics of Biomedicine project webpage, http://web.pdx.edu/∼ralfw/body-composition.html, and BCA webpage, http://web.pdx.edu/∼ralfw/body-composition.html. Google Scholar
  10. 10. K. J. Ellis, “Human body composition: In vivo methods,” Physiol. Rev. 80, 649–680 (2000). https://doi.org/10.1152/physrev.2000.80.2.649, Google ScholarCrossref, ISI
  11. 11. S. Mattsson and B. J. Thomas, “Development of methods for body composition studies,” Phys. Med. Biol. 51, R203–28 (2006). https://doi.org/10.1088/0031-9155/51/13/R13, Google ScholarCrossref, ISI
  12. 12. D. Sidebottom, “Use of bratwurst sausage as a model cadaver in introductory physics for the life sciences lab experiments,” Phys. Teach. 53, 367–371 (Sept. 2015). https://doi.org/10.1119/1.4928355, Google ScholarScitation, ISI
  13. 13. A. Shuster, M. Patlas, J. H. Pinthus, and M. Mourtzakis, “The clinical importance of visceral adiposity: A critical review of methods for visceral adipose tissue analysis,” Br. J. Radiol. 85, 1–10 (2012). https://doi.org/10.1259/bjr/38447238, Google ScholarCrossref, ISI
  14. 14. T. R. Ackland et al., “Current status of body composition assessment in sport,” Sports Med. 42, 227–249 (2012). https://doi.org/10.2165/11597140-000000000-00000, Google ScholarCrossref, ISI
  15. 15. C. Toomey, K. McCreesh, S. Leahy, and P. Jakeman, “Technical considerations for accurate measurement of subcutaneous adipose tissue thickness using B-mode ultrasound,” Ultrasound 19, 91–96 (2011). https://doi.org/10.1258/ult.2011.010057, Google ScholarCrossref
  16. 16. D. R. Wagner, “Ultrasound as a tool to assess body fat,” J. Obesity 2013 (Aug. 2013). https://doi.org/10.1155/2013/280713, Google ScholarCrossref
  17. 17. U. G. Kyle et al., “Bioelectrical impedance analysis—Part I: Review of principles and methods,” Clin. Nutr. 23, 1226–1243 (2004). https://doi.org/10.1016/j.clnu.2004.06.004, Google ScholarCrossref, ISI
  18. 18. E. Mylott, E. M. Kutschera, and R. Widenhorn, “Bioelectrical impedance analysis as a laboratory activity: At the interface of physics and the body,” Am. J. Phys. 82, 521–528 (May 2014). https://doi.org/10.1119/1.4866276, Google ScholarScitation, ISI
  19. 19. W. Piasecki, P. Koteja, J. Weiner, and W. Froncisz, “New way of body composition analysis using total body electrical conductivity method,” Rev. Sci. Instrum. 66, 3037–3041 (1995). https://doi.org/10.1063/1.1145525, Google ScholarCrossref, ISI
  20. 20. P. Dempster and S. Aitkens, “A new air displacement method for the determination of human body composition,” Med. Sci. Sports Exercise 27, 1692–1697 (1995). https://doi.org/10.1249/00005768-199512000-00017, Google ScholarCrossref
  21. 21. Richard D. Feinman and Eugene J. Fine, “‘A calorie is a calorie’ violates the second law of thermodynamics,” Nutr. J. 3 (1), 9 (2004). https://doi.org/10.1186/1475-2891-3-9, Google ScholarCrossref, ISI
  22. 22. E. Kutschera, J. C. Dunlap, M. Byrd, C. Norlin, and R. Widenhorn, “Pulse oximetry in the physics lab: A colorful alternative to traditional optics curricula,” Phys. Teach. 51, 495–497 (Nov. 2013). https://doi.org/10.1119/1.4824949, Google ScholarScitation, ISI
  23. 23. G. A. DiLisi, C. M. Winters, L. A. DiLisi, and K. M. Peckinpaugh, “Got milk?” Phys. Teach. 43, 144 (March 2005). https://doi.org/10.1119/1.1869423, Google ScholarScitation
  24. 24. I. G. Darvey, “A simple inexpensive procedure for illustrating some principles of tomography,” Phys. Teach. 51, 298 (May 2013). https://doi.org/10.1119/1.4801361, Google ScholarScitation, ISI
  25. 25. E. Mylott, R. Klepetka, J. C. Dunlap, and R. Widenhorn, “An easily assembled laboratory exercise in computed tomography,” Eur. J. Phys. 32, 1227–1235 (2011). https://doi.org/10.1088/0143-0807/32/5/010, Google ScholarCrossref, ISI
  26. 26. C. Delaney and J. Rodriguez, “A simple medical physics experiment based on a laser pointer,” Am. J. Phys. 70, 1061–1070 (Oct. 2002). https://doi.org/10.1119/1.1488640, Google ScholarScitation, ISI
  27. 27. D. R. Wagner and V. H. Heyward, “Techniques of body composition assessment: A review of laboratory and field methods,” Res. Q. Exercise Sport 70, 135–149 (1999). https://doi.org/10.1080/02701367.1999.10608031, Google ScholarCrossref, ISI
  28. 28. J. M. Conway, K. H. Norris, and C. E. Bodwell, “A new approach for the estimation of body composition: Infrared interactance,” Am. J. Clin. Nutr. 40, 1123–1130 (1984). https://doi.org/10.1093/ajcn/40.6.1123, Google ScholarCrossref, ISI
  29. 29. D. L. Duren et al., “Body composition methods: Comparisons and interpretation,” J. Diabetes Sci. Technol. 2, 1139–1146 (2008). https://doi.org/10.1177/193229680800200623, Google ScholarCrossref
  30. 30. P. Kinghorn and R. Widenhorn, “Undergrad MRI Workshop Activity - PhET Contribution” (2012), https://phet.colorado.edu/en/contributions/view/3450. Google Scholar
  31. 31. S. Murphy, D. L. Jones, J. Gross, and D. Zollman, “Apparatus for investigating resonance with application to magnetic resonance imaging,” Am. J. Phys. 83, 942–947 (Nov. 2015). https://doi.org/10.1119/1.4928177, Google ScholarScitation, ISI
  1. © 2019 American Association of Physics Teachers.