No Access Submitted: 28 July 2011 Accepted: 13 October 2011 Published Online: 20 January 2012
American Journal of Physics 80, 148 (2012);
more...View Affiliations
View Contributors
  • Antje Kohnle
  • Donatella Cassettari
  • Tom J. Edwards
  • Callum Ferguson
  • Alastair D. Gillies
  • Christopher A. Hooley
  • Natalia Korolkova
  • Joseph Llama
  • Bruce D. Sinclair
We describe a collection of interactive animations and visualizations for teaching quantum mechanics. The animations can be used at all levels of the undergraduate curriculum. Each animation includes a step-by-step exploration that explains the key points. The animations and instructor resources are freely available. By using a diagnostic survey, we report substantial learning gains for students who have worked with the animations.
The authors gratefully acknowledge the support of the UK Higher Education Academy, which funded this project as a Physical Sciences Subject Centre Development Project 2009/10 and 2011/12, and the support through the University of St. Andrews Fund for Initiatives in Learning, Teaching, and Assessment. They thank Aleksejs Fomins, David Canning, and Liam Atkinson, outstanding summer students who created many of the animations. They are grateful to Dr. Judy Hardy for organizing the observation sessions at the University of Edinburgh. They thank the anonymous referees for their helpful comments. Instructors can email the corresponding author for a password to access the instructor resources.
  1. 1. Daniel F. Styer, “Common misconceptions regarding quantum mechanics,” Am. J. Phys. 64(1), 31–34 (1996). , Google ScholarScitation
  2. 2. I. D. Johnston, K. Crawford, and P. R. Fletcher, “Student difficulties in learning quantum mechanics,” Int. J. Sci. Educ. 20(4), 427–446 (1998). , Google ScholarCrossref
  3. 3. S. Vokos, Peter S. Shaffer, Bradley S. Ambrose, and Lillian C. McDermott, “Student understanding of the wave nature of matter: Diffraction and interference of particles,” Am. J. Phys. 68(S1), 42–51 (2000). , Google ScholarScitation
  4. 4. G. Ireson, “The quantum understanding of pre-university physics students,” Phys. Educ. 35(1), 15–21 (2000). , Google ScholarCrossref
  5. 5. C. Singh, “Student understanding of quantum mechanics,” Am. J. Phys. 69(8), 885–896 (2001). , Google ScholarScitation, ISI
  6. 6. M. Wittmann, R. Steinberg, and E. Redish, “Investigating student understanding of quantum physics: Spontaneous models of conductivity,” Am. J. Phys. 70(3), 218–226 (2002). , Google ScholarScitation, ISI
  7. 7. L. Bao and E. F. Redish, “Understanding probabilistic interpretations of physical systems: A prerequisite to learning quantum physics,” Am. J. Phys. 70(3), 210–217 (2002). , Google ScholarScitation, ISI
  8. 8. D. Domert, C. Linder, and A. Ingerman, “Probability as a conceptual hurdle to understanding one-dimensional quantum scattering and tunnelling,” Eur. J. Phys. 26, 47–59 (2005). , Google ScholarCrossref, ISI
  9. 9. M. C. Wittmann, J. T. Morgan, and L. Bao, “Addressing student models of energy loss in quantum tunnelling,” Eur. J. Phys. 26(6), 939–950 (2005). , Google ScholarCrossref
  10. 10. S. B. McKagan, K. K. Perkins, and C. E. Wieman, “Deeper look at student learning of quantum mechanics: The case of tunneling,” Phys. Rev. ST Phys. Educ. Res. 4(2), 020103 (2008). , Google ScholarCrossref
  11. 11. A. Mason and C. Singh, “Do advanced physics students learn from their mistakes without explicit intervention?,” Am. J. Phys. 78(7), 760–767 (2010). , Google ScholarScitation
  12. 12. E. Cataloglu and R. W. Robinett, “Testing the development of student conceptual and visualization understanding in quantum mechanics through the undergraduate career,” Am. J. Phys. 70(3), 238–251 (2002). , Google ScholarScitation, ISI
  13. 13. The QMVI is available at <>. Google Scholar
  14. 14. C. Singh, “Student understanding of quantum mechanics at the beginning of graduate instruction,” Am. J. Phys. 76(3), 277–287 (2008). , Google ScholarScitation, ISI
  15. 15. S. Wuttiprom, M. D. Sharma, Ian D. Johnston, R. Chitaree, and C. Soankwan, “Development and use of a conceptual survey in introductory quantum physics,” Int. J. Sci. Educ. 31 (5), 631–654 (2009). , Google ScholarCrossref, ISI
  16. 16. S. B. McKagan, K. K. Perkins, and C. E. Wieman, “Design and validation of the quantum mechanics conceptual survey,” Phys. Rev. ST Phys. Educ. Res. 6(2), 020121 (2010). , Google ScholarCrossref
  17. 17. A. P. French and E. F. Taylor, “Qualitative plots of bound state wave functions,” Am. J. Phys. 39(8), 961–962 (1971). , Google ScholarScitation
  18. 18. P. Jolly, D. Zollman, S. Rebello, and A. Dimitrova, “Visualizing potential energy diagrams,” Am. J. Phys. 66 (1), 57–63 (1998). , Google ScholarScitation, ISI
  19. 19. Richard N. Steinberg, Graham E. Oberem, and Lillian C. McDermott, “Development of a computer-based tutorial on the photoelectric effect,” Am. J. Phys. 64(11), 1370–1379 (1996). , Google ScholarScitation, ISI
  20. 20. C. Singh, “Interactive learning tutorials on quantum mechanics,” Am. J. Phys. 76(4), 400–405 (2008). , Google ScholarScitation, ISI
  21. 21. L. D. Carr and S. B. McKagan, “Graduate quantum mechanics reform,” Am. J. Phys. 77(4), 308–319 (2009). , Google ScholarScitation, ISI
  22. 22. L. Deslauriers and C. Wieman, “Learning and retention of quantum concepts with different teaching methods,” Phys. Rev. ST Phys. Educ. Res. 7(1), 010101 (2011). , Google ScholarCrossref
  23. 23. T. Stelzer, G. Gladding, Jose P. Mestre, and David T. Brookes, “Comparing the efficacy of multimedia modules with traditional textbooks for learning introductory physics content,” Am. J. Phys. 77(2), 184–190 (2009). , Google ScholarScitation
  24. 24. Zhongzhou Chen, T. Stelzer, and G. Gladding, “Using multimedia modules to better prepare students for introductory physics lecture,” Phys. Rev. ST Phys. Educ. Res. 6(1) 010108 (2010). , Google ScholarCrossref
  25. 25. A. Goldberg, H. M. Schey, and J. L. Schwartz, “Computer-generated motion pictures of one-dimensional quantum-mechanical transmission and reflection phenomena,” Am. J. Phys. 35(3), 177–186 (1967). , Google ScholarScitation, ISI
  26. 26. D. Schroeder and T. Moore, “A computer-simulated Stern-Gerlach laboratory,” Am. J. Phys. 61(9), 798–805 (1993). , Google ScholarScitation, ISI
  27. 27. J. R. Hiller, I. D. Johnston, and D. F. Styer, Quantum Mechanics Simulations (John Wiley & Sons, New York, 1995). Google Scholar
  28. 28. B. Thaller, Visual Quantum Mechanics: Selected Topics With Computer-Generated Animations of Quantum-Mechanical Phenomena (Springer, New York 2000). Google ScholarCrossref
  29. 29. D. Zollman, S. Rebello, and K. Hogg, “Quantum physics for everyone: Hands-on activities integrated with technology,” Am. J. Phys. 70(3), 252–259 (2002). See also <>. , Google ScholarScitation
  30. 30. N. D. Finkelstein, W. K. Adams, C. J. Keller, P. B. Kohl, K. K. Perkins, N. S. Podolefsky, S. Reid, and R. LeMaster, “When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment,” Phys. Rev. ST Phys. Educ. Res. 1(1), 010103 (2005). , Google ScholarCrossref
  31. 31. M. Belloni, W. Christian, and A. J. Cox, Physlet Quantum Physics: An Interactive Introduction (Pearson Prentice Hall, Upper Saddle River, NJ, 2006). Google Scholar
  32. 32. C. Singh, M. Belloni, and W. Christian, “Improving student’s understanding of quantum mechanics,” Phys. Today 59(8), 43–49 (2006). , Google ScholarCrossref, ISI
  33. 33. C. E. Wieman, K. K. Perkins, and W. K. Adams, “Oersted medal lecture 2007: Interactive simulations for teaching physics: What works, what doesn’t and why,” Am. J. Phys. 76(4), 393–399 (2008). , Google ScholarScitation
  34. 34. S. B. McKagan, K. K. Perkins, M. Dubson, C. Malley, S. Reid, R. LeMaster, and C. E. Wieman, “Developing and researching PhET simulations for teaching quantum mechanics,” Am. J. Phys. 76(4), 406–417 (2008). See also <>. , Google ScholarScitation, ISI
  35. 35. See, for example, <>. Google Scholar
  36. 36. G. Zhu and C. Singh, “Improving students’ understanding of quantum mechanics via the Stern–Gerlach experiment,” Am. J. Phys. 79(5), 499–507 (2011). , Google ScholarScitation
  37. 37. A. Kohnle, M. Douglass, Tom J. Edwards, Alastair D. Gillies, Christopher A. Hooley, and Bruce D. Sinclair, “Developing and evaluating animations for teaching quantum mechanics concepts,” Eur. J. Phys. 31(6), 1441–1455 (2010). , Google ScholarCrossref, ISI
  38. 38. <> , Google Scholar
  39. 39. <> , Google Scholar
  40. 40. W. K. Adams, S. Reid, R. LeMaster, S. B. McKagan, K. K. Perkins, M. Dubson, and C. E. Wieman, “A study of educational simulations. Part I—engagement and learning,” J. Interact. Learn. Res. 19(3), 397–419 (2008). Google Scholar
  41. 41. W. K. Adams, S. Reid, R. LeMaster, S. B. McKagan, K. K. Perkins, M. Dubson, and C. E. Wieman, “A study of educational simulations. Part II—interface design,” J. Interact. Learn. Res., 19(4), 551–577 (2008). Google Scholar
  42. 42. N. S. Podolefsky, K. K. Perkins, and W. K. Adams, “Factors promoting engaged exploration with computer simulations,” Phys. Rev. ST Phys. Educ. Res., 6(2), 020117 (2010). , Google ScholarCrossref
  1. © 2012 American Association of Physics Teachers.