Published Online: 15 September 2005
Accepted: July 2005
American Journal of Physics 73, 938 (2005); https://doi.org/10.1119/1.2034523
more...View Affiliations
Symplectic integrators very nearly conserve the total energy and are particularly useful when treating long times. We demonstrate some of the properties of these integrators by exploring the structure of first-, second-, and fourth-order symplectic integrators and apply them to the simple harmonic oscillator. We consider numeric, geometric, and analytic aspects of the integrators with particular attention to the computed energies.
The authors would like to acknowledge the help of anonymous reviewers, whose comments resulted in a greatly improved version of this paper.
  1. 1. Rene de Vogelaere, “Methods of integration which preserve the contact transformation property of the Hamiltonian equations,” Report #4, Department of Mathematics, University of Notre Dame (1956). Google Scholar
  2. 2. R. D. Ruth, “A canonical integration technique,” IEEE Trans. Nucl. Sci. NS-30, 2669–2671 (1983). Google ScholarCrossref
  3. 3. S. Edvardsson, K. G. Karlsson, and M. Engholm, “Accurate spin axes and solar system dynamics: Climatic variations for the Earth and Mars,” Astron. Astrophys. 384, 689–701 (2002). Google ScholarCrossref
  4. 4. H. Kinoshita, H. Yoshida, and H. Nakai, “Symplectic integrators and their application to dynamical astronomy,” Celest. Mech. https://doi.org/10.1007/BF00048986 50, 59–71 (1991). Google ScholarCrossref
  5. 5. S. Mikkola and P. Wiegert, “Regularizing time transformations in symplectic and composite integration,” Celest. Mech. Dyn. Astron. 82, 375–390 (2002). Google ScholarCrossref
  6. 6. P. Saha and S. Tremaine, “Symplectic integrators for solar system dynamics,” Astron. J. https://doi.org/10.1086/116347 104, 1633–1640 (1992). Google ScholarCrossref
  7. 7. J. Wisdom and M. Holman, “Symplectic maps for the n-body problem,” Astron. J. https://doi.org/10.1086/115978 102, 1528–1538 (1991). Google ScholarCrossref
  8. 8. J. Wisdom and M. Holman, “Symplectic maps for the n-body problem: Stability analysis,” Astron. J. 104, 2022–2029 (1992). Google ScholarCrossref
  9. 9. Robert D. Skeel, Guihua Zhang, and Tamar Schlick, “A family of symplectic integrators: Stability, accuracy, and molecular dynamics applications,” SIAM J. Sci. Comput. (USA) https://doi.org/10.1137/S1064827595282350 18, 203–222 (1997). Google ScholarCrossref
  10. 10. Peter Nettesheim, Folkmar A. Bornemann, Burkhard Schmidt, and Christof Schütte, “An explicit and symplectic integrator for quantum-classical molecular dynamics,” Chem. Phys. Lett. https://doi.org/10.1016/0009-2614(96)00471-X 256, 581–588 (1996). Google ScholarCrossref
  11. 11. Peter Nettesheim and Sebastian Reich, “Symplectic multiple-time-stepping integrators for quantum-classical molecular dynamics,” in Computational Molecular Dynamics: Challenges, Methods, Ideas, edited by P. Deuflhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, and R. D. Skeel (Springer, New York, 1998), pp. 412–420. Google Scholar
  12. 12. Andreas Dullweber, Benedict Leimkuhlera, and Robert McLachlan, “Symplectic splitting methods for rigid body molecular dynamics,” J. Chem. Phys. https://doi.org/10.1063/1.474310 107, 5840–5851 (1997). Google ScholarCrossref
  13. 13. F. Neri, “Lie algebras and canonical integration,” Technical Report, Department of Physics, University of Maryland, preprint (1987), unpublished. Google Scholar
  14. 14. Haruo Yoshida, “Construction of higher order symplectic integrators,” Phys. Lett. A https://doi.org/10.1016/0375-9601(90)90092-3 150, 262–268 (1990). Google ScholarCrossref
  15. 15. This method has been found more than once. See, for example, “Stable solutions using the Euler approximation.” Alan Cromer, Am. J. Phys. https://doi.org/10.1119/1.12478 49, 455–459 (1981). Google ScholarScitation
  16. 16. E. Harier, C. Lubich, and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations (Springer, New York, 2002). Google Scholar
  17. 17. Haruo Yoshida, “Symplectic integrators for Hamiltonian systems: Basic theory,” in Chaos, Resonance, and Collective Dynamical Phenomena in the Solar System, Proceedings of the 152nd Symposium of the International Astronomical Union (1991), p. 407. Google Scholar
  18. 18. Haruo Yoshida, “Recent progress in the theory and application of symplectic integrators,” Celest. Mech. Dyn. Astron. 56, 27–43 (1993). Google ScholarCrossref
  19. 19. J. M. Sanz-Serna, “Symplectic integrators for Hamiltonian problems: An overview,” Acta Numerica 1, 243–286 (1992). Google ScholarCrossref
  20. 20. V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer-Verlag, New York, 1978). Google ScholarCrossref
  21. 21. B. A. Shadwick, Walter F. Buell, and John C. Bowman, “Structure preserving integration algorithms,” in Scientific Computing and Applications (Nova Science, Commack, New York, 2001), Vol. 7, pp. 247–255. Google Scholar
  22. 22. Loup Verlet, “Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules,” Phys. Rev. https://doi.org/10.1103/PhysRev.159.98 159, 98–103 (1967). Google ScholarCrossref
  23. 23. See, for example, H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods, 2nd ed. (Addison-Wesley, Reading, MA, 1996), p. 123. Google Scholar
  24. 24. J. Candy and W. Rozmus, “A symplectic integration algorithm for separable Hamiltonian functions,” J. Comput. Phys. https://doi.org/10.1016/0021-9991(91)90299-Z 92, 230–256 (1991). Google ScholarCrossref
  25. 25. Franz J. Vesely, Computational Physics: An Introduction, 2nd ed. (Kluwer Academic, New York, 2001). Google ScholarCrossref
  26. 26. R. I. McLachlan, “The accuracy of symplectic integrators,” Nonlinearity https://doi.org/10.1088/0951-7715/5/2/011 5, 541–562 (1992). Google ScholarCrossref
  27. © 2005 American Association of Physics Teachers.