Published Online: 29 November 1999
Accepted: July 1999
American Journal of Physics 67, 1253 (1999); https://doi.org/10.1119/1.19112
more...
Brownian motion represents simple diffusion random walk processes. More complex random walk processes also can occur when probability distributions describing the random jump distances and times have infinite moments. We explore the manner in which these distributions can arise and how they underlie various scaling laws that play an important role in both random and deterministic systems.
  1. 1. A. Einstein, “On the motion, required by the molecular-kinetic theory of heat, of particles suspended in a fluid at rest,” Ann. Phys. (Leipzig) 17, 549–560 (1905). Google ScholarCrossref
  2. 2. J. Perrin, Les Atomes, 4th ed. (Libairie Alcan, Paris, 1914). Google Scholar
  3. 3. E. W. Montroll and M. F. Shlesinger, “On the wonderful world of random walks,” in Studies in Statistical Mechanics, edited by J. L. Lebowitz and E. W. Montroll (North-Holland, Amsterdam, 1984), Vol. 11, pp. 1–121. Google Scholar
  4. 4. M. F. Shlesinger, B. J. West, and J. Klafter, “Levy dynamics of enhanced diffusion: application to turbulence,” Phys. Rev. Lett. 58, 1100–1103 (1987). Google ScholarCrossref
  5. 5. J. Klafter, M. F. Shlesinger, and G. Zumofen, “Beyond Brownian motion,” Phys. Today 49, 33–39 (1996). Google ScholarCrossref
  6. 6. M. F. Shlesinger, “Fractal time in condensed matter,” Annu. Rev. Phys. Chem. 39, 269–290 (1988). Google ScholarCrossref
  7. 7. G. Pfisterand H. Scher, “Dispersive non-Gaussian transient transport in disordered solids,” Adv. Phys. 27, 747–798 (1978). Google ScholarCrossref
  8. 8. H. Scher, M. F. Shlesinger, and J. T. Bendler, “Time-scale invariance in transport and relaxation,” Phys. Today 44, 26–34 (1991). Google ScholarCrossref
  9. 9. M. F. Shlesinger, “Random processes,” in the Encyclopedia of Applied Physics (Springer-Verlag, Berlin, 1996), Vol. 16, p. 45. Google Scholar
  10. 10. P. Levy, Theorie de L’addition des Variables Aleatoires (Gauthier-Villars, Paris, 1937). Google Scholar
  11. 11. B. D. Hughes, M. F. Shlesinger, and E. W. Montroll, “Random walks with self-similar clusters,” Proc. Natl. Acad. Sci. USA 78, 3287–3291 (1981). Google ScholarCrossref
  12. 12. M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, in Levy Flights and Related Topics in Physics (Springer-Verlag, Berlin, 1995). Google Scholar
  13. 13. M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, “Strange kinetics,” Nature (London) 263, 31–38 (1993). Google ScholarCrossref
  14. 14. M. F. Shlesinger, J. Klafter, and Y. M. Wong, “Random walks with infinite spatial and temporal moments,” J. Stat. Phys. 27, 499–512 (1982). Google ScholarCrossref
  15. 15. T. Geisel, J. Nierwetberg, and A. Zacherl, “Accelerated diffusion in Josephson-junctions and related chaotic systems,” Phys. Rev. Lett. 54, 616–619 (1985). Google ScholarCrossref
  16. 16. F. Hayot, “Levy walk in lattice gas hydrodynamics,” Phys. Rev. A 43, 806–810 (1991). Google ScholarCrossref
  17. 17. J. Klafter, G. Zumofen, and M. F. Shlesinger, “Fractal description of anomalous diffusion in dynamical systems,” Fractals 1, 389–404 (1994). Google ScholarCrossref
  18. 18. G. M. Zaslavsky, M. Edelman, and B. A. Niyazov, “Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics,” Chaos 1, 159–181 (1991). Google Scholar
  19. 19. G. M. Zaslavsky, Physics of Chaos in Hamiltonian Systems (Imperial College Press, London, 1998). Google Scholar
  20. 20. J. Klafterand G. Zumofen, “Levy statistics in a Hamiltonian system,” Phys. Rev. E 49, 4873–4877 (1994). Google ScholarCrossref
  21. © 1999 American Association of Physics Teachers.