Abstract
REFERENCES
- 1. A. Einstein, “On the motion, required by the molecular-kinetic theory of heat, of particles suspended in a fluid at rest,” Ann. Phys. (Leipzig) 17, 549–560 (1905). Google ScholarCrossref
- 2. J. Perrin, Les Atomes, 4th ed. (Libairie Alcan, Paris, 1914). Google Scholar
- 3. E. W. Montroll and M. F. Shlesinger, “On the wonderful world of random walks,” in Studies in Statistical Mechanics, edited by J. L. Lebowitz and E. W. Montroll (North-Holland, Amsterdam, 1984), Vol. 11, pp. 1–121. Google Scholar
- 4. M. F. Shlesinger, B. J. West, and J. Klafter, “Levy dynamics of enhanced diffusion: application to turbulence,” Phys. Rev. Lett. 58, 1100–1103 (1987). Google ScholarCrossref
- 5. J. Klafter, M. F. Shlesinger, and G. Zumofen, “Beyond Brownian motion,” Phys. Today 49, 33–39 (1996). Google ScholarCrossref
- 6. M. F. Shlesinger, “Fractal time in condensed matter,” Annu. Rev. Phys. Chem. 39, 269–290 (1988). Google ScholarCrossref
- 7. G. Pfisterand H. Scher, “Dispersive non-Gaussian transient transport in disordered solids,” Adv. Phys. 27, 747–798 (1978). Google ScholarCrossref
- 8. H. Scher, M. F. Shlesinger, and J. T. Bendler, “Time-scale invariance in transport and relaxation,” Phys. Today 44, 26–34 (1991). Google ScholarCrossref
- 9. M. F. Shlesinger, “Random processes,” in the Encyclopedia of Applied Physics (Springer-Verlag, Berlin, 1996), Vol. 16, p. 45. Google Scholar
- 10. P. Levy, Theorie de L’addition des Variables Aleatoires (Gauthier-Villars, Paris, 1937). Google Scholar
- 11. B. D. Hughes, M. F. Shlesinger, and E. W. Montroll, “Random walks with self-similar clusters,” Proc. Natl. Acad. Sci. USA 78, 3287–3291 (1981). Google ScholarCrossref
- 12. M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, in Levy Flights and Related Topics in Physics (Springer-Verlag, Berlin, 1995). Google Scholar
- 13. M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, “Strange kinetics,” Nature (London) 263, 31–38 (1993). Google ScholarCrossref
- 14. M. F. Shlesinger, J. Klafter, and Y. M. Wong, “Random walks with infinite spatial and temporal moments,” J. Stat. Phys. 27, 499–512 (1982). Google ScholarCrossref
- 15. T. Geisel, J. Nierwetberg, and A. Zacherl, “Accelerated diffusion in Josephson-junctions and related chaotic systems,” Phys. Rev. Lett. 54, 616–619 (1985). Google ScholarCrossref
- 16. F. Hayot, “Levy walk in lattice gas hydrodynamics,” Phys. Rev. A 43, 806–810 (1991). Google ScholarCrossref
- 17. J. Klafter, G. Zumofen, and M. F. Shlesinger, “Fractal description of anomalous diffusion in dynamical systems,” Fractals 1, 389–404 (1994). Google ScholarCrossref
- 18. G. M. Zaslavsky, M. Edelman, and B. A. Niyazov, “Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics,” Chaos 1, 159–181 (1991). Google Scholar
- 19. G. M. Zaslavsky, Physics of Chaos in Hamiltonian Systems (Imperial College Press, London, 1998). Google Scholar
- 20. J. Klafterand G. Zumofen, “Levy statistics in a Hamiltonian system,” Phys. Rev. E 49, 4873–4877 (1994). Google ScholarCrossref
- © 1999 American Association of Physics Teachers.
Please Note: The number of views represents the full text views from December 2016 to date. Article views prior to December 2016 are not included.

